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ABSTRACT

Artificial neural networks (ANNs) applied to nonlinear wave ensemble averaging are developed and

studied for Gulf of Mexico simulations. It is an approach that expands the conservative arithmetic en-

semble mean (EM) from the NCEP Global Wave Ensemble Forecast System (GWES) to a nonlinear

mapping that better captures the differences among the ensemble members and reduces the systematic and

scatter errors of the forecasts. The ANNs have the 20 members of the GWES as input, and outputs are

trained using observations from six buoys. The variables selected for the study are the 10-m wind speed

(U10), significant wave height (Hs), and peak period (Tp) for the year of 2016. ANNs were built with one

hidden layer using a hyperbolic tangent basis function. Several architectures with 12 different combinations

of neurons, eight different filtering windows (time domain), and 100 seeds for the random initialization

were studied and constructed for specific forecast days from 0 to 10. The results show that a small number of

neurons are sufficient to reduce the bias, while 35–50 neurons produce the greatest reduction in both the

scatter and systematic errors. The main advantage of the methodology using ANNs is not on short-range

forecasts but at longer forecast ranges beyond 4 days. The nonlinear ensemble averaging using ANNs was

able to improve the correlation coefficient on forecast day 10 from 0.39 to 0.61 for U10, from 0.50 to 0.76 for

Hs, and from 0.38 to 0.63 for Tp, representing a gain of five forecast days when compared to the EM

currently implemented.

1. Introduction

The U.S. National Centers for Environmental Predic-

tion (NCEP) have produced atmospheric forecasts using

ensembles since 1992 and wave ensembles since 2005.

Kalnay (2003) describes the two main advantages of

using ensemble forecasts: the ensemblemembers tend to

smooth out uncertain components, which lead to better

skill than single deterministic forecasts; and the spread

of the ensemble members provides an estimation of

the uncertainty. The mean of the ensemble members

is typically more accurate than any deterministic fore-

cast after the first few forecast days, as presented by

Zhou et al. (2017) for the NCEP Global Ensemble

Forecast System (GEFS). As the wave modeling is

strongly dependent on the quality of surface winds

(Cavaleri et al. 2007), the benefit of the atmospheric

ensemble is transferred to the NCEP Global Wave

Ensemble Forecast System (GWES; Chen 2006), which is
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validated and discussed by Cao et al. (2007) and Alves

et al. (2013). Despite the improvement of the operational

wave ensemble compared to the deterministic run, the

GWES still suffers from shortcomings that limit its skill,

especially associated with systematic errors that vary

with forecast time and location. The GWES currently

uses the conservative arithmetic ensemble mean (EM),

as shown in Eq. (1):
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i51
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where n is the number of ensemble members and pi
is the state of the ith ensemble member. The major

advantage of the conservative approach is that EM

can be calculated always without any additional in-

formation. However, this measure of central tendency

assumes a linear relationship between the EM and

ensemble members. Because this relationship may be

strongly nonlinear, as stated by Krasnopolsky and Lin

(2012), particularly at long lead times, a nonlinear

ensemble average calculated using feedforward neu-

ral networks is proposed, trained with wind and wave

observations at various forecast lead times. The ex-

periments are conducted using a spatial approach for

wave simulations in the Gulf of Mexico, a region with

intense maritime activity, offshore industry, and coastal

vulnerabilities. The prognostic variables selected for

analysis are wind speed (U10), significant wave height

(Hs), and peak period (Tp).

The use of artificial neural networks (ANNs) for

environmental analyses and forecasts has rapidly in-

creased over recent years. Sánchez et al. (2018) presented a
mathematical model that uses ANNs for the assessment

of wave energy potential. Berbić et al. (2017) applied

ANNs and support vector machines for short forecasts

of significant wave height. Dixit and Londhe (2016)

developed a neuro wavelet technique, combining dis-

crete wavelet transform and ANNs, to explore the pre-

dictability of extreme events for five major hurricanes at

four locations in the Gulf of Mexico. Deo et al. (2001),

Deo and Sridhar Naidu (1998), and Mandal and

Prabaharan (2006) developed ANN systems to pre-

dict significant wave heights in India, and Tsai et al.

(2002) in Taiwan. Krasnopolsky and Lin (2012) de-

veloped ANN-based models to produce a nonlinear

ANN ensemble forecast for precipitation, and Lo et al.

(2015) developed a calibration method using ANN for

cyclonic precipitation forecast models. A complete de-

scription of the theory of multilayer perceptron neural

networks, the basis of our present study, was developed

byHaykin (1999), which has been successfully applied to

many practical applications in Earth system sciences by

Krasnopolsky (2013).

Despite the popularization of ANNs, most of the fore-

cast studies have been aimed at applying ANN models

directly to predictwave heights and surfacewinds as target

variables. Campos and Guedes Soares (2016) proposed

an alternative methodology using a hybrid model, join-

ing the numerical wave model with ANNs. The nu-

merical model predicts the wave heights while the target

of the ANN is to predict the residue (i.e., the difference

between the measurement and the model), which is re-

combined to provide an accurate estimation of wave

heights at the Brazilian coast. The final bias was reduced

from 0.13 to 0.06m and the scatter index from 0.12 to

0.03. However, Campos and Guedes Soares (2016)

did not consider the ensemble forecasts that signifi-

cantly reduce the scatter errors when compared to

deterministic runs.

In view of the above, we conceived a new approach

linking the benefits of ensemble forecast systems with

ANNs, which are able to approximate any continuous

function. We start by describing our methods in section

2, the observations and preprocessing in section 3, and

the neural network models for the Gulf of Mexico in

section 4. The results are presented in section 5, while

concluding remarks are made in section 6.

2. Multilayer perceptron neural networks

The nonlinear ensemble averaging in the present

study is entirely based on the multilayer perceptron

(MLP) model (Rumelhart et al. 1986), which is a feed-

forward artificial neural network that uses supervised

learning.Most problems can bemapped using two layers

of nodes plus the input layer. Equation (2) describes the

model with a hyperbolic tangent as the activation func-

tion (Krasnopolsky 2013):
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where xi is the input; yq is the output; a and b are the

ANN weights; n and m are the number of inputs and

outputs, respectively; and k is the number of nonlinear

activation functions. Campos et al. (2017) also describes

the model, where the first summation on the right-hand

side of Eq. (2) represents a linear combination of hy-

perbolic tangents, while the second summation is the

weighted sum of input variables. Haykin (1999) explains

the backpropagation training using gradient descent, a

simple and powerful optimization able to map highly

nonlinear functions. It is based on the idea that searching

for a minimum of the error function can be performed
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step by step iteratively and that at each step there is an

increment or decrement of the weights in such a way as

to decrease the error function (Krasnopolsky 2013). A

supervised learning method, such as backpropagation,

relies on a set of historical values considered as target

variables (measurements) that must be properly pre-

processed—described in the next section. Figure 1 il-

lustrates the MLP neural network model, where in red

are the€neurons€with sigmoid functions, usually hyper-

bolic tangent, that are applied to the weighted linear

combination of the normalized input variables described

by Eq. (2).

Although MLP neural network (MLP-NN) modeling

is simple to understand and to code, there are several

aspects that must be carefully investigated before and

while training and running ANNs, which is described

by Krasnopolsky (2013, 2014). Some steps include (i)

choice of relevant input variables that contribute to

the nonlinear mapping; (ii) proper normalization of

input variables; (iii) analysis of optimum ANN ar-

chitecture and complexity, including the number of

layers and neurons; (iv) learning rate and gradient

descent scheme; (v) optimum number of iterations

during the training process; and (vi) careful assess-

ment of results, dividing the datasets into training,

test, and validation sets.

Krasnopolsky (2014) states that the complexity of

the ANN should be carefully controlled and kept to

the minimum level sufficient for the desired accuracy

of the approximation to avoid overfitting. Further-

more, the training set must represent the mapping for

the ANN, with a sufficient sample size of properly

distributed data points that adequately resolve the

functional complexity of the target mapping. For en-

vironmental variables, at least one year is necessary

in order to properly cover distinct conditions and a

full seasonal cycle. Another source of error that must

be investigated is the amount of noise in the target

variables. Krasnopolsky (2013) draws attention that

even a small amount of noise in the data may lead to

significant errors in the ANN emulations. An addi-

tional discussion of prediction of a time series as a

mapping using ANNs can be found in Weigend and

Gershenfeld (1994).

A preliminary study, using ANNs to improve GWES

at single-buoy locations is presented by Campos et al.

(2017), which summarizes the first steps of the current

development. Two pairs of National Data Buoy Center

(NDBC) buoys were selected for the ANN training

and validation: buoys 41004 and 41013 in the Atlantic

Ocean and buoys 46047 and 46028 in the Pacific

Ocean. The input variables of the MLP-NN consist of

the 21 GWES ensemble members (20 plus the control

member) associated with the variables U10, Hs, and

Tp, as well as the sine and cosine of time (Julian days)

to properly include the time and seasonality infor-

mation. Therefore, a total of 65 input variables x

compose the n inputs for the ANNmodel. The outputs

y consist of three variables only (Hs, Tp, and U10;

m5 3) from the NDBC buoys, targeted by the model.

Each ANN addresses one forecast time, with the focus

of Campos et al. (2017) on the fifth day, which is ap-

proximately the time when ensemble forecasts start to

have better performance than deterministic forecasts,

according to Alves et al. (2013).

All variables were normalized to the interval be-

tween 21 and 1 to run the ANN, and denormalized

after training, for the test and validation. It was found

that occasional extreme conditions generate sharp

peaks that are not properly optimized by the ANN;

so, following the suggestion of Krasnopolsky and Lin

(2012), a log function was additionally applied to

Hs, which leads to better results as a result of a more

homogeneous distribution of values, illustrated by

Fig. 2.

A cross-validation scheme was implemented, where

two-thirds of the data are selected for the training set

and one-third for the test set. After the optimization of

weights, the ANN models were applied to a nearby

buoy, where the data were not included in the ANN

training. Several ANNs were tested, changing the

number of neurons from 1 to 50 as well as later ex-

periments with more layers. Campos et al. (2017)

found that the best ANN architecture has one hidden

layer of 11 neurons. It provided an improvement on

FIG. 1. Illustration of an MLP-NN model containing one hidden

layer (red) with sigmoid functions applied to linear combinations

of inputs.
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the 5-day forecast of 64% in the bias, 29% in the root-

mean-square error (RMSE) and scatter index, and

11% in the correlation coefficient. The successful

results from Campos et al. (2017) applied to single-

buoy locations supported the current expansion of

the methodology to a spatial approach in the Gulf

of Mexico.

3. Input data and observations

Following the selection of data in the previous section,

the datasets that were used for development and vali-

dation of ANNs in the Gulf of Mexico consist of one

year (2016) of GWES historical forecasts (input of the

ANNs) and NDBC observations for the ANN training.

The variables selected are, again, U10, Hs, and Tp. The

GWES is run with four cycles per day, and wind and

wave models are run at a resolution of 0.58 in space and

3h in time, extending to 10 days. A total of 20 ensemble

members plus a control member compose the GWES,

an implementation of the WAVEWATCH III model

(Tolman 2016) forced by winds from the GEFS. The

interval of GWES and observations selected corre-

sponds to the year of 2016, which is a period without

major GEFS or GWES model upgrades, and which

composes a complete seasonal cycle. A complete as-

sessment and description of GEFS and GWES can be

found at Zhou et al. (2017) and Alves et al. (2013),

respectively.

Six NDBC buoys in the Gulf of Mexico moored

in deep waters have been selected for the ANNs

modeling—42001, 42002, 42003, 42039, 42055, 42360—

with locations plotted in Fig. 3. The wind data from

buoys were converted to the 10-m level using the

wind profile power law (Det Norske Veritas 2007)

with a friction coefficient of 0.10, as suggested by Hsu

et al. (1994), for lakes and oceans.

A quick assessment of GWES is plotted in Fig. 4,

where observations from the buoys are bundled to

form a single dataset with a length of 7913, which are

paired with the ensemble results. The top row of plots

(Figs. 4a–c) compares the ensemble members with the

deterministic run and the arithmetic EM. Figure 4a

shows the success of GEFS and the methodology

described by Zhou et al. (2017), where the RMSE of

the ensemble mean of U10 performs significantly

better than the deterministic run after the fourth

forecast day. This difference reaches nearly 30% of

FIG. 3. Location of the six NDBC metocean buoys moored in

deep waters.

FIG. 2. Example of normalization of time series of Hs applying a natural log function (blue)

compared to the original normalized Hs (black). This corresponds to NDBC buoy 41004 in

2016. The highest peak is associated with Hurricane Matthew.
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the improvement of U10 at the eighth day. The higher

surface wind skill is extended to the wave heights,

where the ensemble means of Hs and Tp are also

better than the deterministic runs. However, Fig. 4d

presents the normalized bias of the ensemble mem-

bers of Hs, where a heterogeneous distribution of

the systematic error across the forecast days and en-

semble members can be observed. The nowcast and first

forecast day are underestimated, while after the third

forecast day GWES tends to overestimate the measure-

ments in the Gulf of Mexico. The ensemble members

agree with each other during the first days, and they di-

verge at longer forecast ranges, increasing the spread

confirmed by Figs. 4a–4c. Therefore, despite the im-

provements of GWES (Figs. 4a–c), a bias correction

postprocessing algorithm should be implemented in

order to reduce the severe systematic errors illustrated

by Fig. 4d. The complexity of the bias distribution

requires a robust and powerful approximator able to

map the features and degrees of freedom of the GWES

error signal, which will be handled by the ANNs in the

next section.

The assessment of ANN results in the next sec-

tion is analyzed with much more detail. The eval-

uation is based on the error metrics suggested by

Mentaschi et al. (2013), who discussed the advan-

tages of interpreting the systematic and scatter com-

ponents of the error separately. Therefore, a total

of seven metrics [Eqs. (3)–(9)] were introduced

to evaluate the results, following the description of

Mentaschi et al. (2013), where x is the buoy data and

y is the forecast, and the overbar indicates the

arithmetic mean:
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FIG. 4. Assessment of GWES in the Gulf of Mexico using six NDBC buoys in deep water. RMSE of (a) U10 (m s21), (b) Hs (m), and

(c) Tp (s). Black curves show the ensemble members, cyan is the deterministic run, and red is the arithmetic mean of the ensemble

members. (d) Normalized bias of Hs (m) illustrating the 20 ensemblemembers (y axis) through the 10 days of forecast (x axis), where reds

indicate overestimation and blues represent underestimation of GWES.
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The metric units of Bias, RMSE, and SCrmse are the

same as the selected variables—that is, U10 in meters

per second, Hs in meters, and Tp in seconds—while

NBias, NRMSE, SI, and CC are nondimensional. It is

important to note that these metrics are used for the

assessment of the results, comparing the EM with the

nonlinear ensemble averaging. The ANN algorithm

minimizes only the square of the error in the training set.

4. Neural network models in the Gulf of Mexico

a. ANN architecture and training

The initial architecture of the ANNs is shown by

Eq. (10), where the MLP-NN directly calculates the

nonlinear ensemble average using Hs and Tp from

GWES and U10 from GEFS as input:

NEM5NN(p
1
, p

2
, . . . ,p

n
) . (10)

The drawback of such an approach is that it uses the

ANN model to calculate both linear and nonlinear

components of the signal, when the benefits of ANN

models are primarily found when applied to nonlinear

problems (Krasnopolsky 2013).

To solve this problem, Eq. (11) brought a simple

solution by taking the arithmetic mean and applying

ANN to simulate the residue (difference between

the target value and the EM):

NEM5EM1NN
r
(p

1
, p

2
, . . . , p

n
) . (11)

Hence, the ANN model is dedicated exclusively to the

nonlinear component, preserving the results of the EM

on the linear part. Such an approach builds a more ro-

bust model that provides reliable ensemble averages at

different metocean conditions and sea severities, as

concluded by Campos et al. (2017). An illustration of

Eqs. (1), (10), and (11) is provided by Fig. 5, where it is

possible to compare the different ANN strategies de-

scribed. The occasional problem associated with

Eq. (11) is the excess of noise in the residue, which can

increase the risk of overfitting (Krasnopolsky 2014).

Figure 6 shows an example of the residue of Hs, where

the level of noise and high-frequency changes can be

visualized. The problem of noise and overfitting can be

reduced by properly filtering the time series.

FIG. 5. Illustration of Eqs. (1), (10), and (11).
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Moving from a single spot analysis to a spatial ap-

proach in the Gulf of Mexico required a small modi-

fication in the ANN configuration. As ANN models

converge to optimum weights and biases that cannot

be directly interpolated or extrapolated in space, the

strategy of introducing space in ANN models is to

include the position (latitude and longitude) as a new

degree of freedom (new ANN inputs). The ANN and

tests were constructed for each forecast day, in-

dependently. This gives a total of 67 inputs, related to

three variables (U10, Hs, and Tp) with 21 ensemble

members, plus the sine and cosine of time [i.e., sin(2pt/T)

and cos(2pt/T), respectively, where T is one year], and

latitude and longitude. The three outputs are the residue

of U10, Hs, and Tp.

b. Signal preprocessing

Figure 7 illustrates the randomness and spread of the

residue against the buoy observations. The challenge of

ANN models mapping the residue is equivalent to pre-

dicting the error of the EM of U10, Hs, and Tp using the

ensemble members as input. Therefore, if there is any

trend, pattern, or correlation between the error of the

EM with the variables U10, Hs, and Tp itself, the ANN

FIG. 6. Time series of the residue of Hs (blue) and the filtered signal using a moving average of

120 h (black).

FIG. 7. Residue of (top) U10 (m s21) and (bottom)Hs (m) related to the difference between EM and buoy measurements in the Gulf of

Mexico. The y axis shows the residues, while the x axis shows the observations related to each of the 7913 inputs. (left) The nowcast

(forecast day 0), (center) forecast day 5, and (right) forecast day 10.
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can extract these dependencies from the data. Figure 7

shows a great spread at all plots, which is expected once

they illustrate the difference between EM and the buoy

measurements. However, there is a positive trend be-

tween the residue and the variables that suggests larger

errors at higher values of U10 and Hs. This positive

correlation is very small at day 0 plots, but it increases

throughout the forecast range. Forecast day 10, for Hs,

shows a strong linear relation between the residue and

Hs. It gives an idea that the ANNwill behave differently

at distinct forecast instants and suggests better results

for longer forecast ranges.

The spectra of the residues of U10, Hs, and Tp were

also calculated for each buoy, showing three main peaks

at 40, 70, and 200 h; that is, the errors of the EM are

mainly concentrated at these three periods. The high

level of noise in the signal of the residue, exemplified by

Fig. 6, and the spectral analysis suggest that filtering

techniques can significantly improve the ANN training.

A simple low-pass moving average filter can remove the

high-frequency oscillation (black curve of Fig. 6) mostly

associated with random noise that is verified to com-

promise the ANN training. However, it is not known a

priori the precise cutoff frequency that better optimizes

the filtering of the residue signal, so several tests are

performed with different filtering windows to investigate

the level of smoothness on the validation metrics. After

finding the optimum filtering strategy, the new filtered

signal of the residue becomes the target value of the

ANN, following Eq. (11).

c. Sensitivity tests

With the introduction of multiple buoy approaches,

the complexity of theANNand the training set increases

compared to the single-location case. The performance

in this case is highly dependent on the number of hidden

neurons and the filtering of variables, which can be op-

timized by running multiple tests. Therefore, instead of

working with one ANN model, a batch of several runs

was constructed. Because of the partially random nature

of the signal associated with the target variables (ANN

outputs) and the MLP-NN training method, the initial-

ization of weights also has some impact on the final skill

of the model (Fig. 8). This means different seeds can

lead to slightly distinct performances, so it was also

considered in the ANN runs.

A total of 12 different combinations of neurons were

tested, eight different filtering windows, and 100 seeds

for the random initialization. It was constructed using

separate ANNs for specific forecast lead times, from day

0 to day 10 forecasts. Therefore, taking the 11 forecast

ranges selected, plus the tests with neurons, filtering, and

initialization, a total of 105600 ANNs were built and

trained.ANNswith the number of hidden neuronsN5 2,

5, 10, 15, 20, 25, 30, 35, 40, 50, 80, and 200, and filtering

windows of magnitude 0, 24, 48, 96, 144, 192, 288, and

480h were tested, using the moving average method.

For the ANN training, two-thirds of the records

were selected for training and one-third for the test

set, using a cross-validation scheme with three cycles,

alternating the indices defined for training and testing.

This approach was intended to ensure a fair evaluation

of the training and to reduce the misinterpretation as-

sociated with overtraining of a specific set. The seven

metrics from Eqs. (3)–(9) are calculated with the results

reported in arrays with six dimensions for each variable

(U10, Hs, Tp): forecast day; filtering window; number of

neurons, seeds, set (EM, training, and testing); and error

metrics. The results are analyzed for each variable,

forecast day, and error metric.

Figure 8 shows the NBias and SCrmse using 100 dif-

ferent seeds for initialization, focusing on forecast day

10. The results indicate that the ANN is sensitive to the

random initialization and show the spread associated

with different ANN optimizations. It was observed that

the scatter of error metrics is higher at longer forecasts.

FIG. 8. NBias and SCrmse according to Eqs. (4) and (7), respectively, resulting from the ANN training tests on forecast day 10 in the

Gulf of Mexico. Results involving different numbers of neurons and filtering windows were averaged to analyze the sensitivity to the

initialization, using 100 different seeds. Each of the two sets shows (left) the main plot and (right) the empirical probability density

function of the left panel, transposed, and sharing the same y axis.
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The objective is to look for the initialization (seed) that

provides the best model performance.

Figures 9 and 10 present the results for different

numbers of neurons at the hidden layer, for U10 andHs,

respectively. Different seeds and filtering windows were

averaged to allow the analysis to focus on the number of

neurons, from 2 to 200. It is easy to see that NBias is not

very sensitive to the number of neurons, so a few neu-

rons are sufficient to optimize the mapping compared to

other error metrics, which is valid for all the variables,

that is, U10, Hs, and Tp.

The scatter error is highly dependent on the number

of neurons. The SCrmse and CC are continuously im-

proved by a higher number of neurons until reaching an

optimum around 40–50 neurons. At that point, the met-

rics begin to deteriorate with more neurons. Once again,

the impact of different ANN models is higher on longer

forecasts, which can be visualized, for example, com-

paring the range of values in the CC plots from day 0

with day 10. In Figs. 9 and 10, all the ANN architectures

tested resulted in better values of SCrmse and CC than

the traditional EM.

Figure 11 presents the error metrics as a function of

the size of the filtering window, from 0 to 480h (20 days),

for Hs. Looking at NBias only and the first forecast days,

the ANN models do not benefit from the filtering com-

pared to the EM that already has small normalized

biases around 0.05–0.10. The SCrmse and CC, instead,

FIG. 9. NBias, SCrmse, and CC according to Eqs. (4), (7), and (9), respectively, resulting from the ANN training tests on forecast (top)

day 0 (red), (middle) day 5 (blue), and (bottom) day 10 (black) for U10. Results involving different initializations and filtering windows

were averaged to analyze the sensitivity to the number of neurons only. The solid line is theANNmodel result, while the dashed line is the

arithmetic EM, in order to compare their performances. Points on the plots represent the number of neurons equal to 2, 5, 10, 15, 20, 25, 30,

35, 40, 50, 80, and 200, respectively.
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show a significant improvement with window sizes be-

tween 48 and 192h, which occurs mainly because the

moving average filtering removes the high-frequency ran-

domness from the signal that helps the ANN to minimize

the scatter error. Recall the spectral analysis that identified

three energetic peaks of the residues, at 40, 70, and 200h.

This behavior is confirmed in Fig. 11, where the ANNs

could better improve the SCrmse and CC for filtering

windows from 48 to 192h. Again, the relative improve-

ment is more evident at longer forecast ranges.

Regarding the bias, Figs. 9 and 10 present worse re-

sults for the ANNs than the conservative EM. This is

initially because the systematic error does not have a

strong dependence on the number of neurons, and the

results of Figs. 9 and 10 have averaged different seeds

and filtering windows, which have a greater importance

for this type of error. When the bias is analyzed as a

function of the size of the filtering window, in Fig. 11, it

is possible to see the improvement of the bias of the

ANNs, especially on day 10, and related to filtering

windows around 144–192 h. Therefore, the bottom-left

plot of Fig. 11 better exemplifies the benefit of the

ANNs for bias correction of the GWES.

5. Results and discussion

We analyzed the errors of wind and wave parameters

from theGWES, examined how the signal of the residue

FIG. 10. NBias, SCrmse, and CC according to Eqs. (4), (7), and (9), respectively, resulting from the ANN training tests on forecast (top)

day 0 (red), (middle) day 5 (blue), and (bottom) day 10 (black) forHs. Results involving different initializations and filteringwindowswere

averaged to analyze the sensitivity to the number of neurons only. The solid line is theANNmodel result, while the dashed line is the result

for the EM, in order to compare their performances. Points on the plots represent the number of neurons equal to 2, 5, 10, 15, 20, 25, 30, 35,

40, 50, 80, and 200, respectively.
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is distributed, and explored the appropriate ANN ar-

chitectures to best implement nonlinear ensemble av-

eraging for simulations in theGulf ofMexico. Figures 9–11

present the number of neurons and filtering windows

that best improved certain error metrics for different

forecast days and variables, using a large sensitivity

test involving 105 600 ANN simulations. Figure 12

shows the results of the best independent ANNs, which

are compared to the original GWES values and the

arithmetic EM.

In terms of the brief assessment of the current NCEP

ensemble forecast, the NBias of U10 in Fig. 12 indicates

the nonhomogeneity of GEFS surface wind accuracy,

with strong negative bias of the nowcast that is improved

with forecast time. A direct impact is observed on the

wave bias, which is consistent with the wind bias trend.

Therefore, the ensemble approach of Zhou et al. (2017)

implemented in the GEFS does not improve the sys-

tematic bias, as expected, confirmed by the red and cyan

curves with similar values of NBias. The nonlinear en-

semble averaging using ANNs, instead, could remove

this trend of NBias on GEFS winds and reduce the

systematic errors for all variables. The SCrmse plots

of Fig. 12 confirm the success of the ensemble approach

in reducing the scatter errors, when compared to the

deterministic run.

Moving to the ANN nonlinear ensemble averaging

results, Fig. 12 shows further improvement of the scatter

FIG. 11. NBias, SCrmse, and CC according to Eqs. (4), (7), and (9), respectively, resulting from the ANN training tests on forecast (top)

day 0 (red), (middle) day 5 (blue), and (bottom) day 10 (black) for Hs. Results involving different initializations and the number of

neurons were averaged to analyze the sensitivity to filtering windows only. The solid line is the ANNmodel result, while the dashed line is

the result for the EM, in order to compare their performances. Points on the plots represent the site of the window (h) equal to 0, 24, 48, 96,

144, 192, 288, and 480, respectively.
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errors, with smaller values of SCrmse. This shows that

theANNs are useful not only for bias correction but also

for reducing scatter errors still present in the ensemble

forecasts. The results for Tp have a slightly different

evolution, with the reduction of SCrmse even for the

nowcast and first forecast days, not seen in the plots of

U10 and Hs. The CC of Fig. 12 confirms the success of

the ANN method, where forecast day 10 has a skill

similar to that of day 5 associated with the EM, a gain of

five forecast days using the nonlinear ensemble average

as described.

Apart from Tp, Figs. 9–12 show that the main ad-

vantage of using ANNmodels is not on the nowcast and

short-range forecasts but on the longer-term forecasts.

This is especially true for the reduction of the scatter

errors, being related to the strong random component of

FIG. 12. Assessment of the results of the ANNs compared to the GWES and EM. Black curves show the ensemble members, cyan is the

deterministic run, red is the arithmeticmean of the ensemblemembers, and dashed green is the nonlinear ensemble averages usingANNs.

(top) Bias, (middle) SCrmse, and (bottom) CC according to Eqs. (3), (7), and (9), respectively.
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the residue signal of forecast day 0, at Fig. 7. This feature

highlights the importance of filtering for the improve-

ment of the scatter components of the error. However,

even with various filtering windows, it is difficult for the

ANNs to improve the scores provided by the EM be-

cause of the strong random component of day 0. The

ANN architectures linked to the best scores provide

important information to study the complexity and

optimization of the nonlinear approximation.

Now that we have defined the best ANN architecture

and calculated the preferred weights and biases, it is

possible to implement the methodology for opera-

tional applications of the nonlinear ensemble aver-

ages of GWES data. To evaluate the ability of the ANNs,

we apply it over the GWES grid covering the Gulf of

Mexico and compare obtained fields with the conser-

vative GWES ensemble average that is produced oper-

ationally. Figure 13 shows an example of an application

relative to Hurricane Hermine (Berg 2017). All plots

represent the same instant but show three different

forecast lead times: nowcast, day 5, and day 10 forecasts.

Hurricane Hermine had extreme winds up to 35ms21

and waves up to 6m high, close to the coast of Florida.

As mentioned before, the nowcast generally has smaller

errors and the plots of EM and ANNs are very similar.

Moving five days back in time, the day 5 forecast has

significantly smoothed the sharp peak of the storm. The

extreme winds of the EM dropped from 25 to 10ms21, a

severe underestimation. However, the ANNs better

capture the peak of the storms with winds of 13ms21.

The improved representation of the hurricanewinds is

propagated to the wave fields. The conservative EM of

the day 5 forecast reducedHs from 6.0 to 2.2m in Fig. 13,

while with theANN it is still underestimated but withHs

of 3m—confirming the better representation of the peak

of the storm. Looking at the day 10 forecast, a very

challenging forecast horizon, the EM does not show any

signal of the hurricane. Meanwhile, a few GWES mem-

bers were pointing to a tropical depression that was

captured by the ANNs. The results from the nonlinear

ensemble averaging are still underestimated but with a

better representation of the peak of the storm than the

EM.Cryosat-2 altimetermeasurements obtained from the

satellite database of theNational Environmental Satellite,

Data, and Information Service (NESDIS) have covered

the region close to Florida at 0400UTC2September 2016.

FIG. 13. Comparison between the arithmetic EM and the nonlinear ensemble average using ANNs for Hs of Hurricane Hermine in the

Gulf of Mexico in 2016. All plots represent the same instant, 2 Sep 2016, but with three different forecast lead times. (right) The analysis

(working as a benchmark), (center) forecast day 5, and (left) forecast day 10.
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Comparative results for the forecast day 5 are presented

by Fig. 14, which corroborates with the discussion, show-

ing the better representation of the nonlinear ensemble

average using ANNs than the EM.

6. Conclusions

The initial assessment of GWES presented in Fig. 4

pointed to a complex behavior of the systematic bias

that cannot be addressed by simplistic bias correction

algorithms. Further evidence illustrates the evolution of

GWES errors, with systematic biases that are common

to deterministic and ensemble forecasts (Fig. 8). When

we considered this problem, as well as the limitations

of the conservative arithmetic EM, we concluded that

a proper nonlinear approximator could significantly

improve the GWES forecasts.

A large experiment with 105 600 ANNs varying

the random initialization, and the number of neurons

and filtering windows, following the suggestions of

Krasnopolsky and Lin (2012), was undertaken to study

the best architecture and the complexity of ANNs to

optimize the nonlinear ensemble averaging of GWES in

the Gulf of Mexico. It was found that a small number

of neurons is sufficient to reduce the bias, while 35–50

neurons are best suited to reduce both the scatter and

systematic errors. The strong scatter component of

the nowcast makes it difficult for the ANN to improve

scores produced by the EM. The error metrics confirm

that the main advantage of the methodology using ANNs

is not on the nowcasts or short-range forecasts but

primarily for longer-range forecasts. The correlation

coefficient for forecast day 10, for example, was in-

creased from 0.39 to 0.61 for U10, from 0.50 to 0.76 for

Hs, and from 0.38 to 0.63 for Tp, representing a gain in

skill of five forecast days using the nonlinear ensemble

average.

Our study addressed the relatively small basin of the

Gulf of Mexico using only buoy data for ANN training,

because of the high temporal sampling of buoys that

better capture the peak of the storms, as discussed by

Alves and Young (2003). The ANNs were trained using

only six deep water buoys and then was applied to the

entire Gulf of Mexico basin. The comparison presented

in Fig. 13 illustrates a very good generalization ability of

the developed ANNs and strongly supports the validity

of the presented approach. The next step of our study is

to expand this approach to the whole globe, including

altimeter data that will be crucial to support ANNs to

proper simulate the spatial distribution of GWES errors.

Our study also suggests that ANNs may be used effec-

tively in an operational wave guidance context to pro-

duce bias-corrected data with improved skill, a path that

will be pursued in more detail in a forthcoming study.
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